HEAT TRANSFER AND FRICTION CORRELATIONS FOR R134a WITH OFFSET STRIP FIN SURFACE

M. Amaranatha Raju, C. Ranganayakulu Aeronautical Development Agency (ADA) Vimanapura Post Bangalore-560 017, India Email : amaranatha@yahoo.com T.P. Ashok Babu Department of Mechanical Engineering National Institute of Technology Surathkal, Managalore, India

Abstract

Single phase heat transfer analysis of R134a refrigerant (liquid phase) has been carried out using Computational Fluid Dynamics (CFD) approach for offset strip fin. Colburn j factor and Fanning friction factor are predicted for offset strip fin. The correlations are developed at Reynolds number range of 100-15000. The effect of fin geometry (fin spacing, fin height, fin thickness and lance length) on the enhanced heat transfer and pressure drops were investigated. Colburn j factor and fanning friction factor f, correlations have proposed in terms Re and geometry parameters (h/s, t/s, t/l) for liquid refrigerant R134a in the present study. Two separate correlations have proposed for the low and high Re regions i.e. Between Re of 100-1000 and Re of 1000-15000. The numerical results are validated with experimental results, results are found in good agreement with experimental results. Variation is found less than 5%.

Keywords: Compact Heat Exchanger, Friction Factor, Colburn Factor, Offset Strip Fin, Heat Transfer Coefficient, Refrigerant